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Abstract

This article discusses the high added-value of using frequent tri-dimensional

radar observations of the atmosphere to capture the dynamics of rapidly

evolving weather systems. The novelty of our approach resides in its ap-

plication to spaceborne radars, since none of the existing spaceborne radars

is capable of such frequent observations (within minutes). Nonetheless, re-

cent advances in small-satellite and radar technologies, such as the Radar in

Cubesat (RainCube) developed at the Jet Propulsion Laboratory, have paved

the way for the design of a convoy of spaceborne radars to perform the tar-

geted measurements.

The joint use of the radar reflectivities Z and their time derivatives dtZ

provides rich and unique information about the dynamics of the atmosphere.

As illustrated using NEXRAD measurements of a blizzard coupled with an

atmospheric river in California and of tropical storms making landfall in

Florida and Hawaii, maps of dtZ reveal latent horizontal features about

locations of sources and sinks of moisture. The robust relation between

dtZ and the rate of change of the condensed-water mass M is also con-

firmed using numerical-weather simulations of the topical cyclone Isabel

with a radiative-transfer code to simulate Ka-band measurements of Z from

space. The high resolution of these simulations in space and time allows

also to demonstrate that vertical dynamic variables such as fluxes of dry and

moist air in convection can be retrieved accurately from Z and dtZ using a

Bayesian algorithm.
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Lastly, we discuss some of the constraints involved in the design of a

convoy of two satellites, each embarking a mini nadir-pointing Ka-band At-

mospheric Radar (miniKaAR). Our simulations show that, with a convoy

of two spacecraft separated by ⇠ 90 s, each with a pointing accuracy of

⇠ 0.025� in rms error, a sensitivity of 17 dBZ and a precision of 1 dBZ,

the proposed mission will observe more than 70% of the tropical convection

between 5 and 10 km of altitude and resolve the time variations of fluxes of

convective air masses.

1 Introduction

Spaceborne profiling radars provide valuable tri-dimensional measurements of

clouds and precipitation for which in-situ data are often challenging to obtain.

From these global observations, researchers and operational forecasters are able

to estimate meteorological quantities such the mass of condensed water or the

precipitation rate from the measured reflectivity factor Z, the mean characteristic

size (e.g. mass-weighted mean diameter) of hydrometeors from dual-wavelength

ratios, or latent-heating profiles from the reflectivity and mean Doppler veloc-

ity [1, 5, 7, 9].

While the current fleet of spaceborne precipitation radars provides a good spatial

coverage of the atmosphere of the Earth, it does not allow to properly capture the
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time variation of cloud or precipitation systems that have life cycles in the order of

30 minutes to a few hours [13]. While a radar on a geostationary platform would

fulfill the requirement of frequent temporal sampling, such an instrument does not

exist yet partly due to the difficulty of achieving a high spatial resolution from a

geostationary orbit with an antenna of reasonable size. The existing low-Earth

orbiting satellites that carry radars such as CloudSat (16 days revisit time), the

Tropical Rainfall Measurement Mission (TRMM, 11–12 hours repeat time) or the

core satellite of the Global Precipitation Mission (GPM, 3 hour repeat time) are

such that between two consecutive passes of the instrument over a given region

the cloud or storm of interest will have changed significantly if not disappeared.

The use of frequent high-resolution observations of the atmosphere over a given

region allows to assess the dynamic evolution of the atmospheric state parameters

by computing their derivatives. These derivatives help quantify processes such

as mass or heat fluxes, which are essential parameters of storms and tropical cy-

clones [7]. Hence, the computed derivatives would be particularly relevant for

their assimilation in numerical weather forecasting models [14].

The objective of this article is to illustrate the usefulness of derivatives of frequent

high-resolution radar reflectivity observations to characterize the atmosphere. The

added value of the computed derivatives will be shown by i) illustrating how the

spatial patterns of these derivatives differ from those of the initial radar reflectivity,

ii) demonstrating the robustness of the correlation between derivatives of the radar
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reflectivities and derivatives of the condensed water mass, and iii) showing how

these variables help estimate dynamic atmospheric parameters such as vertical

fluxes of dry or moist air.

To the best of the authors’ knowledge, such a use of radar observations is uncom-

mon. Among the rare applications is the work done in morphing where sequences

of measurements are used to rebuild the time evolution of the radar singal. This

amounts to interpolating the measurements in a spatially and physically meaning-

ful way at a spatial and temporal resolution finer than the one of the measured

data [19, 25]. In our case, the objective is not to interpolate the data at a finer res-

olution than available, but rather to exploit the information carried by the deriva-

tives of the radar data.

To this end, the article is structured around three parts. First, the added value

of high-resolution radar data sets is shown using ground-based measurements of

reflectivity factors Z acquired by the network of S-band (⇠ 3 GHz) NEXRAD

radars. Due to the “coarse” sampling rate of NEXRAD (⇠4 to 6 min in precip-

itation mode), the time derivatives dtZ computed by finite differences account

for the advection, which is estimated robustly using a digital-image correlation

technique [3]. Three extreme-weather NEXRAD data sets are considered, viz.

i) the Northern California super-storm of January 2008, which was coupled with

an atmospheric river, ii) the tropical cyclone Fay as it made landfall in Florida in

August 2008, and iii) the tropical storm Iselle, which made landfall on Big Island,
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Hawaii, in August 2014. These three examples reveal patterns in the horizontal

distributions of dtZ, which differ from those of the radar reflectivities themselves

and therefore call for a quantitative analysis of the derived products in terms of

atmospheric variables particularly along the vertical dimension.

This is done in the second part of the article, where high-resolution cloud-resolving-

model simulations of a cyclogenesis are used. These Weather Research and Fore-

casting (WRF) simulations are fed to a radiative-transfer code to obtain Ka-band

(⇠ 35 GHz) radar reflectivity data observed by a spaceborne radar with a horizon-

tal resolution similar to GPM’s Ka-band radar and a very fine vertical resolution

(the native WRF vertical resolution). Three different micro-physical schemes are

employed during these radiative transfer simulations, viz. Lin, WSM6 and an em-

pirical scheme devised by the authors. The analysis of these refined data allows

to relate the derivatives dtZ of the synthetic radar signatures to the rate of change

of condensed-water mass dtM , in a significantly more robust way than traditional

single-frequency Z�M relationships. Moreover, the fine vertical sampling of the

simulated Z and dtZ allows to retrieve vertical dynamic variables such as trans-

ports of air masses in convective cores. The Bayesian-retrieval algorithm that we

propose yields accurate estimates of both dry and moist air mass fluxes in the

upper troposphere, which in turns informs on detrainment processes at those alti-

tudes.

In light of these results, the third and last part of the article discussed some design

criteria for the acquisition of frequent radar measurements using a convoy a low-

Earth orbiting (LEO) CubeSats. In the propsed mission, each spacecraft would
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carry a mini nadir-pointing Ka-band Atmospheric Radar (MiniKaAR), which uses

the Radar in CubeSat (RainCube) technology recently developed at JPL. A pre-

liminary performance analysis of such a train of radars provides guidelines about

the optimal inter-satellite separation, and the sensitivity of the radar measurements

and retrievals to pointing uncertainties.

The outline of this article is as follows. First, a preliminary heuristic analysis

is presented in Section 2 to discuss the relationship between derivatives of radar

reflectivities and derivatives of the mass of condensed water. Section 3.1 then il-

lustrates the spatial patterns of these derivatives using NEXRAD measurements

of three extreme-weather events, viz. a blizzard in Northern California, a tropical

cyclone making landfall and tropical storm interacting with complex orography.

This part involves uniquely measurements and no numerical model simulation of

the atmosphere. Next, in Section 4, numerical simulations of the atmosphere are

used with radiative-transfer simulations to quantify the relation between deriva-

tives of the radar reflectivities and atmospheric thermodynamic variables. In Sec-

tion 5, we analyze the design criteria that are required to obtain frequent radar

measurements from a train of spaceborne radars on small satellites. Conclusions

are provided in Section 6.
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2 Time derivatives of the radar reflectivity factors

We consider a set of reflectivity factor measurements {Z[mm6·m�3](r, t), r 2

⌦, t 2 T } obtained from ground-based, airborne or spaceborne radars over an

observation volume ⌦ ⇢ R3 at times T = {tk}k ⇢ R. The total derivative of

Z[dBZ] = 10 log10(Z[mm6·m�3]) then reads

dtZ[dBZ](r, t) =
10

ln(10)

dtZ[mm6·m�3]

Z[mm6·m�3]

= @tZ[dBZ](r, t) +U (r, t) ·rrZ[dBZ](r, t). (1)

Through the presence of the advection U in Eq. (1), dtZ[dBZ] tracks the motion of

an air parcel between radar acquisitions and measures the variation of its reflec-

tivity factor thereby quantifying the net effect of sources and sinks of reflectivity.

Numerically, the derivative between data at instants t`�1 and t` is approximated

by finite differences as follows

dtZ[dBZ](r, t`) ⇡
Z[dBZ](r, t`)� Z[dBZ] [r +U (r, t`�1), t`�1]

t` � t`�1

. (2)

Typical cases where the contribution of the advection in Eq. (1) can be neglected

are when the characteristic length U (r, t`�1)(t` � t`�1) is smaller than or compa-

rable to the spatial resolution of the volume ⌦, as is the case with high-resolution

convective data sets that involve processes that develop essentially along the ver-

tical.
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The relevance of dtZ can be motivated in terms of the micro-physical properties

of the volume observed by the radar. Indeed, it is common to relate the radar

reflectivity to the total mass of condensed water M contained in the resolution

volume of the radar through an empirical relationship such as [5, 9]

Z[mm6·m�3](r, t) = ↵(r, t)[M(r, t)]�(r,t), (3)

where ↵(r, t) > 0 and �(r, t) > 0, or in logarithmic scale,

Z[dBZ](r, t) = ↵dB(r, t) + 10 �(r, t) log10[M(r, t)], (4)

with ↵dB = 10 log10(↵). Compared to M(r, t), which depends on and varies

rapidly with the PSD and microphysical properties of the medium, the coefficients

↵(r, t) and �(r, t) exhibit much slower temporal and spatial variations [8]. Hence,

dtZ[dBZ] can be related to dtM as follows

dtZ[dBZ](r, t) ⇡ 10�(r, t)

ln(10)

dtM(r, t)

M(r, t)
, (5)

As a corollary to the slow variation of � with space and time, Eq. (5) shows that

the linear correlation between dtZ[dBZ] and dtM/M should be very robust. More-

over, since � and q are positive, the sign of dtZ[dBZ] provides information about

the dominance of either evaporation or condensation in the atmospheric volume.

Such information, which is derived exclusively from the radar measurements, can

be used to nudge numerical weather forecasting programs (NWP) or to identify
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regions of saturation where latent heating profiles can be retrieved [7].

3 Applications to NEXRAD extreme-weather mea-

surements

Due to the absence of collocated spaceborne or airborne radar data sets with suffi-

ciently high spatial and temporal resolutions, we resort to ground-based measure-

ments. The network of NEXRAD radars provides an large variety of 3D measure-

ments for a broad range of weather conditions at numerous locations across the

US. These S band radars are mainly sensitive to heavy precipitation. We consider

three such extreme-weather cases, viz. the California blizzard of January 2008,

the tropical cyclone Fay in Florida (August 2008) and the tropical storm Iselle in

Hawaii (August 2014).

The native data is available as 3D conical volume scans produced every 5 minutes,

on average. To ease the computation of derivatives, the radar data are meshed

into a Cartesian grid with a resolution �X = �Y = 1.5 km horizontally and

�Z = 250 m vertically. Given the time sampling rate of the data (i.e. 4-6 min-

utes), and since the events studied involve significant horizontal displacements,

the advection field U must be included in the computation of the derivatives of

Z[dBZ]. Failing to do so leads to erroneous estimates of the total derivative as
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shown in Appendix A.1 (Fig. 18).

We estimate U entirely from the radar data using a digital-image correlation tech-

nique (DICT) [22]. As detailed in Appendix A.1, given two consecutive radar

acquisitions at times t0 and t1, the DICT identifies the field U that maximizes

the statistical correlation between the field of Z[dBZ] at t1 and the field of Z[dBZ]

at t0 displaced according to U . The statistical optimization is performed for ev-

ery vertical layer of radar data individually thereby yielding a “2.5D” advection

field. This is a compromise between a crude 2D approach that would correlate

vertical averages of Z[dBZ] at t0 and t1, and the full 3D approach that would incur

significant additional computations. The DICT is applied by computing local cor-

relations over a neighborhood that extends over ±10 km in the longitudinal and

meridional directions thereby resolving advection speeds up to ⇠ 120 km · h�1.

3.1 California blizzard: Sacramento, January 2008

The superstorm that hit Northern California in early 2008 led to record low pres-

sures for a storm in the western United States and heavy precipitation in the Sierras

(snow) and the Bay area (rain). The geostationary infrared image in Fig. 1 hints

that the storm consisted of a baroclinic system drawing some moisture from the

“Pineapple Express” to the South-West. The data used here were recorded by the

NEXRAD radar in Sacramento (KDAX) during the peak of the storm, i.e. from
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Figure 1: Visible image of the January 2008 North American Super-
storm at peak intensity, on January 4, 2008. Courtesy of NASA -
http://www.wunderground.com/hurricane/2007/jan04.jpg

01-04-2008 at 18:00 to 01-05-2008 at 01:00. In particular, from 21:38 to 00:30

a squall line swept through from the North-West to the South-East, as shown in

Fig. 2 (top, left). This case is a prime example of interaction between a strong

precipitation system and a complex topography organized meridionally with the

ocean to the West, the Northern and Southern Coastal Range mountains, the Great

Valley and the Sierra Nevada to the East. Moreover, due to its relatively short life

cycle (3 hours), the evolution of the squall line could not have been captured with

a sufficient temporal resolution by any of the existing LEO spaceborne radars. The

spatial distribution of the vertically averaged reflectivity (denoted Eh[Z]), and its

derivative (denoted Eh[dtZ]) are shown in Fig. 2 for three acquisition periods,

viz. from 22:11 to 22:16 where the squall line is clearly visible (left), before the
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Figure 2: Maps of vertically averaged reflectivity (top) and associated derivative
defined by equation (1) (bottom) as observed by the NEXRAD radar in Sacra-
mento on 01-04-2008: temporally averaged from 22:11 to 22:16 (left) during the
presence of the squall line, from 18:14 to 20:53 (middle) before the formation of
the squall line, and from 21:02 to 01:00 (during squall).

formation of the squall line (middle) and after the formation of the line (right).

A 6⇥ 6 km2 smoothing kernel is applied to Eh[dtZ] to reduce its noisiness. The

maps of Eh[Z] clearly show the squall line to the East of Sacramento with a

slightly slanted meridional orientation. One can note the differences in the pat-

terns of Eh[dtZ] compared to those of Eh[Z] as the regions with the largest Eh[Z]

do not necessarily correspond to the regions of largest Eh[dtZ], and vice versa.

Furthermore, because the derivative accounts for the advection, the displacement
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Figure 3: Water vapor derived from AMSR-E courtesy of RSS – note the atmo-
spheric river advecting water vapor from the South West towards California.

of the squall line is not visible in the map of Eh[dtZ]. The cells of increas-

ing/decreasing reflectivity are mainly oriented from North-West to South East,

i.e. parallel to the topography and orthogonal to the squall line. These patterns

are confirmed by the maps of the data averaged over longer periods both before

and after the formation of the squall line. On the other hand, persistent regions of

increasing reflectivity can be seen in the South-West over the Bay area and in the

Sierras, while a region of reflectivity sinks is present in the Great Valley. These

patterns are consistent with the presence of an atmospheric river (AR) of water

vapor (see figure 3), which the authors had looked for among the AR events that
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had been cited by the time of our analysis by Ralph et al in [20] and the references

therein, in vain, but which features as one of the strongest AR events by every

measure in the more complete list compiled in Ralph et al [21]. Note how the

condensation appears to be triggered mostly over the coastal ranges, where the

AR “makes landfall” (and compare with the center panels of figure 18), triggering

a wave train propagating inland in the same direction as the AR itself.

3.2 Tropical storm Fay: Melbourne, Florida, August 2008

Fay was a tropical storm characterized by an erratic trajectory as it zigzagged be-

tween the ocean and land. The data analyzed here were measured by the radar in

Melbourne (KMLB), Florida, from 08-19-2008 at 18:00 to 08-19-2008 at 01:00.

During this time, the eye of the cyclone had a relatively slow northward motion

from (81�W, 27�N) at 18:00 up to (80.8�W, 27.5�N) at 01:00. The maps of

Eh[Z] and Eh[dtZ] in Fig. 4 correspond to vertical and temporal averages over 10

minutes (left) and two hours (middle) about 22:00 and over the entire observation

period (right). For the data averaged over a short duration (left column), the map

of Eh[Z] clearly shows the eye as well as spirals of large reflectivity associated

with the rain bands. The map of Eh[dtZ] shows various regimes with concentric

spirals, viz. one spiral of decaying reflectivity bracketed by an inner and outer spi-

ral of increasing signal. Averaging over a longer duration (middle, right) confirms

these features and also shows that the sources of Z (i.e. Eh[dtZ] > 0) are mostly
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Figure 4: Maps of vertically averaged reflectivity (top) and associated derivatives
(bottom) as observed by the radar in Melbourne, FL on 08-19-2008: temporally
averaged between 22:00 and 22:12 (left), between 21:03 and 23:00 (middle) and
between 18:06 and 01:00.
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over water (East of Melbourne (KMLB)) whereas over land Z has a decreasing

trend (i.e. Eh[dtZ] < 0), which is consistent with the ocean acting as a source of

moisture.

3.3 Tropical storm Iselle: Hawaii, August 2014

The tropical cyclone Iselle was the strongest cyclone to make landfall on the Big

Island of Hawaii, according to recorded history. Although by the time it reached

the Big Island it was downgraded to a tropical storm, it still carried significant

amounts of precipitation. The mountainous relief of the Island disrupted the spa-

tial organization of the cyclone and eventually led to its disappearance on August

9 2014. The data analyzed here were measured by the South Shore radar (PHWA)

on August 8 2014, i.e. as the cyclonic organization of Iselle (arriving from the

East) was being dismantled. Indeed, one can still see the rain bands in the data

averaged between 11:14 and 11:20 in Fig. 5 (left), both as larger values of Eh[Z]

and Eh[dtZ] along the Southern portion of the storm. For the data averaged over

the early (i.e. before 16:00, middle column) and late (i.e. after 16:00, right col-

umn) observation periods, the map of Eh[Z] does not seem to change significantly.

However, the corresponding maps of the derivatives clearly show the differences

in regimes, with significant build-up of reflectivity in the early period caused by

the moisture brought by the storm, and the dissipation by precipitation that occurs

in the later period as evidenced by the negative derivatives. This is yet another
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Figure 5: Maps of vertically averaged reflectivity (top) and associated derivatives
(bottom) as observed by the radar at South Shore, HI on 08-08-2014: temporally
averaged between 11:14 and 11:20 (left), between 10:44 and 16:00 (middle) and
between 16:00 and 18:00 (right).

example of the added value of the derivatives of Z.

3.4 Comments and limitations

The cases discussed in this section illustrate how the analysis of the derivatives

of the radar reflectivity provides more insight into dynamic and environmental

features than the maps of Z alone (e.g. the moistening caused by the atmospheric
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river in the Blizzard case, moisture source from the ocean in the storm Fay, and

distinction between moisture build-up and collapse by extensive precipitation of

the cyclone Iselle).

The discussion has focused mainly on vertical averages of Z and dtZ, and not on

the vertical structure of these variables. Also, the advection, which is essential to

the computation of the derivatives of the NEXRAD data, was computed via the

DICT approach in 2.5D, i.e. without resolving the vertical component. Such an

approach is acceptable when dealing with baroclinic systems for which horizon-

tal gradients induce instability and the resulting motion is mostly horizontal with

large-scale lifting. Even then, the vertical component of the dynamics is impor-

tant, e.g. to analyze orographic enhancements or convective lifts. Moreover, for

tropical convection, the instability has a critical vertical aspect whereas the lifting

is horizontally localized.

While the analysis in this section has been qualitative, ultimately one needs to

relate the derivatives of Z[dBZ] to physical parameters of the atmosphere, which is

non trivial. In the absence of in situ measurements as is the case here, the only al-

ternative would be to correlate the derivatives of Z[dBZ] measured by NEXRAD to

reanalysis products. However, these reanalysis products are not available at a suf-

ficiently fine horizontal or temporal resolution to compute meaningful derivatives

consistent with the NEXRAD resolution. For instance the NASA Modern-Era

Reanalysis (MERRA) products are, at best, available hourly at a horizontal reso-
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lution of 0.5� (⇠ 50 km), which is significantly coarser than the resolution of the

NEXRAD data.

Lastly, we are also interested in finer resolutions than the NEXRAD resolutions,

particularly along the vertical dimension, and in time. All these reasons motivate

the use of numerical weather models for which model-truths of thermodynamic

parameters of the atmosphere are available.

4 Applications to WRF simulations of Isabel

The Weather Research and Forecasting model (WRF) was used to simulate the

state of the atmosphere during the incipient phase of Hurricane Isabel off the coast

of Cape Verde in the Atlantic ocean (lon ⇠ 30.7�W, lat ⇠ 11.4�N). A 5-nested-

grids configuration was used with respective horizontal resolutions of 12 km (for

the outer grid), 4 km, 1.333 km (the “d03” grid), 444 m and 148 m. Vertically, 60

pressure levels were used between the surface and 20 km, with more samples close

to the surface. The WRF model was initialized with the GFS FNL analysis on 5

September 2003 at 12:00 UTC and the output was collected every 30 seconds

from 06:00 to 07:00 UTC. In this article, we focus mainly on the intermediate

domain (d03), which roughly spanned a domain from longitudes 36�W to 26�W

and from latitudes 6�N to 16�N.
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4.1 Radiative-transfer simulations

In addition to the thermodynamic variables such as the pressure, temperature and

wind, the WRF includes the bulk masses of water in the forms of vapor, cloud

liquid water, cloud ice, snow, graupel and snow. We use these inputs to compute

the corresponding Ka-band reflectivity factors that would be observed by a space-

borne radar like GPM-Core’s. The radiometric signatures of each of water species

depend on fine-scale information such as the size distribution, the shape and the

density of individual particles in the volume observed by the radar. All these prop-

erties are inferred through micro-physical assumptions. Different microphysical

schemes are considered in order to quantify the extent to which the dependence of

the instantaneous measurements on the microphysical detail is reduced when one

considers the change in time at a given location.

To avoid re-computing the scattering behavior of every individual particle, a look-

up-table (LUT) approach is employed by building scattering tables for a selection

of particle size distributions, shapes and densities. These tables are then accessed,

for every species i, using the bulk mass Mi from WRF and the mean mass-

weighted diameter Dm,i resulting from the micro-physical assumptions. Three

different micro-physical parameterizations (MPP) are considered, viz. Lin [17],

WSM6 [11] and ZSH schemes. In the first two MPPs, the diameters Dm,i are com-

puted using PSD and mass-size relationships provided in the literature, whereas

the radiometric parameters are obtained from a T-matrix code [24]. The third
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scheme (ZSH), which was derived by the authors by assuming Dm to be related to

M through a power law Dm,i = ↵M

0.17
i with ↵ a function that varies very slowly

in space and time. The scattering LUT is then built assuming Gamma distributions

and using DDSCAT, which is based on discrete-dipole approximations [6].

Thus for every record in the WRF “d03” data set, the unattenuated reflectivity

Zu,i(Mi, Dm,i) and the specific attenuation kext,i(Mi, Dm,i) provided by the LUT

are combined to obtain the equivalent reflectivity

Z(r, h) =

NspeciesX

i=1

Zu,i(r, h) exp

2

4�2

Z

[k,1)

NspeciesX

j=1

kext,j(r, h
0)dh0

3

5
, (6)

with r the geodetic coordinates of the profile and h the height. These radar re-

flectivities are aggregated horizontally to obtain a ⇠ 4.5 ⇥ 4.5 km2 horizontal

resolution similar to GPM DPR, while preserving the original fine vertical sam-

pling of WRF (60 layers between 0 and 20 km). The other WRF output are also

averaged to this spatial resolution.

Unless stated otherwise, all the results obtained with all these microphysical schemes

are considered equally likely and used together, i.e. as various realizations of the

state of the atmosphere. Doing so provides a way of assessing the sensitivity of

our simulations and algorithms based on the derivatives of Z. As a result, the data

set used in this study comprises 120 instants (every 30 s between 06:00 and 07:00

UTC) for which every scene has 233 ⇥ 233 profiles, each one with 60 vertical
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bins, and each of these scenes has three realizations of Z corresponding to the

three micro-physical schemes.

As an example the maps of vertical averages of the radar reflectivity Z simulated

using the WSM6 scheme is displayed in Fig. 6, together with corresponding av-

erages masses of water vapor and condensed water M , and a mask that shows the

convective profiles. These maps show the spatial organization of the depression

that later became the eye of the hurricane. The convection is mainly present as

localized or “popcorn” cells.

4.2 Comparisons between Z�M and �tZ��tM relationships

It is common in literature to estimate the CWM from the radar measurements via

a relation of the form

M = aZ

b
, (7)

with a and b constants [16]. However, universal constants (a, b) that fit all precip-

itation types at all times and locations do not exist, and retrievals that only use a

single frequency suffer from the large variability in space and time of these param-

eters, particularly a [4]. This large variability is illustrated in Fig. 7, which shows

the dispersion in the Z �M relation, as well as maps of adB = 10 log10(a) and b

obtained by fitting GPM-Core Ka band reflectivity measurements to Level-2 total
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Figure 6: Maps of Isabel simulations at 06:00 UTC: vertically averaged water
vapor mass (top left), maximum absolute vertical wind |!|max in convective pro-
files (top right), CWM (bottom left) and Ka band reflectivity using WSM6 micro-
physics (bottom right).
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water contents retrieved from both GPM channels and the passive microwaves.

These results correspond to data above an altitude of 4.5 km, to avoid adverse

Figure 7: Relation from GPM Ka-band reflectivity measurements (Z) and Level-2
retrieved total water content (M ), over the entire month of June 2015 and above
4.5 km: joint distribution of Z � M (top), parameters adB (second row) and b

(bottom row) of a regression M[dBkg/m3] = adB + bZ[dBZ].

effects caused by attenuation and the melting layer on the retrieved CWM. The

regressions are applied to regions of size 1.5� ⇥ 1.5� for measurements from the

entire month of June 2015. While the exponent b remains mostly between 0.6 and

0.8, the largest variations affect adB.

The large scatter in the Z � M relation is also present in the Isabel simulations

as shown in Fig. 8 where the micro-physical parametrizations are either grouped
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together (top row) or considered individually (rows below). Similarly to Fig. 7,

Figure 8: Relationships Z � M (left) and �tZ[dBZ] � �tM[dB] (right) with time
differences computed over �t = 90 s. Results for all the microphysics grouped
together (top) or used individually: Lin (second row), WSM6 (third row) and ZSH
(bottom) micro-physics.

the Isabel results are analyzed above an altitude of 5.9 km (⇠ 500 mb level), to

avoid the effects of excessive attenuation on the reflectivity. This large variability

translates into a prohibitive uncertainty in the retrieved M . For instance, when

all the MPP are grouped together (top row, left), there is almost a 20 dB range of

uncertainty for the mass corresponding to Z = 20 dBZ.
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The time derivatives of Z[dBZ] and M[dB] = 10 log10(M) are computed by fi-

nite differences over a baseline �t = 90 s. Such a short baseline combined the

dominantly convective nature of the scene allows to properly estimate the deriva-

tives without accounting for the horizontal advection. The joint distributions of

�tZ[dBZ] = �Z[dBZ]/�t and �tM[dB] = �M[dB]/�t are shown in Fig. 8 (right).

Remarkably, the uncertainty on �tM[dB] retrieved from �tZ[dBZ] is considerably

smaller than the uncertainty on M . The slope between �tM[dB] and �tZ[dBZ],

i.e. a measure of the exponent b, is robust around ⇠ 0.7 and largely indepen-

dent of microphysical assumptions. As explained in Section 2, the robustness of

the (�tM[dB],�tZ[dBZ]) relation stems from the fact that, on time scales of order

30–120 seconds and above the freezing level, biases inherent in Z �M relation-

ships that produce a large spread cancel when data are differentiated over short

time intervals (tens of seconds). Thus, the computed �tZ[dBZ] provides a reliable

measure of the moistening rate of the upper troposphere.

4.3 Vertical air mass fluxes: relation to �tZ and Bayesian re-

trievals

We now demonstrate that pairs of radar measurements and their derivatives con-

tain unique information about vertical transport of air in convective cores. To

this end a canonical-correlations analysis (CCA) is combined with a principal-
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component decomposition to identify correlations between radar measurements

and vertical fluxes of air masses. A Bayesian algorithm is then described to es-

timate the vertical fluxes of dry and moist air in convection from the radar ob-

servations. These retrieved results can then be scaled relative to the total amount

of convection by using passive-microwave measurements. The results are similar

to those obtained by Kumar et al., 2016 ( [15]), though our approach is based on

simulated radar reflectivities.

Given two observation times t and t + �t, we denote the corresponding radar

observations ZPRE(·, ·, t) = Z[dBZ](·, ·, t) and ZPOST(·, ·, t) = Z[dBZ](·, ·, t + �t)

and define the time-average and -difference as ZAVG = (ZAVG + ZPOST) /2 and

�tZ[dBZ] = (ZPOST � ZAVG) /�t, respectively. The net mass of dry air trans-

ported vertically between times t and t + �t through the profile r at the altitude

h � 0 is measured via the flux

QAIR(r, h, t) =

Z t+�t

t

⇢AIR(r, h, t
0)!(r, h, t0)dt0 [kg ·m�2]. (8)

The flux of moist air QCWM is defined similarly by substituting M for ⇢AIR in

Eq. (8). While the radar products ZAVG and �tZ[dBZ] only use observations at

times t and t +�t in the upper troposphere (h � 5 km), the flux QAIR is defined

using contributions from ⇢AIR! at all intermediate times between t and t+�t and

over the entire profile (h � 0). The set Ct of convective profiles at time t gathers

the profiles that contain at least five bins with Z[dBZ] � 5 dBZ and at least one bin

31



with a vertical wind |!| � 1 m · s�1. The set of all convective profiles between

06:00 and 07:00 UTC is denoted C = {Ct}06:00t07:00 UTC.

4.3.1 Principal-component and canonical-correlation analyses

Focusing on the convective profiles in C, a principal-component analysis (PCA) is

applied to ZAVG, �tZ[dBZ] and QAIR. This allows to project the initial fields, e.g.

QAIR, on the basis of principal vectors {'Q,k}k=1,...,N0 as follows

QAIR(r, h, t) =

N0X

k=1

⌘Q,k(r, t)'Q,k(h), 8h � 0 km, (9)

where N0 = 60 is the number of bins in the entire vertical profile. The prin-

cipal components (PC) {⌘Q,k}k=1,...,N0 are mutually uncorrelated with variances

equal to the sorted eigenvalues {�Q,k}k=1,...,N0 . Similarly, ZAVG and �tZ[dBZ]

are expressed in terms of their eigen-systems denoted {�A,k,'A,k}k=1,...,N1 and

{�D,k,'D,k}k=1,...,N1 , respectively. The rapid decay of the eigenvalues allows to

approximate the initial fields using the first few PCs, while capturing the variabil-

ity of the initial fields. For instance, Table 1 shows that the first four PCs of QAIR

and ZAVG already represent more than 90% of the total variability. For �tZ[dBZ],

which has a less smooth spectrum, the first six PCs still represent more than 70%

of the total variability.
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Table 1: Relative weights of the first principal components of QAIR, ZAVG and
�tZ[dBZ] from all convective profiles in the Isabel simulations.

Relative weight of the first M eigenvalues, i.e.
MX

k=1

�k

, 1X

k=1

�k

M = 1 M = 2 M = 3 M = 4 M = 5 M = 6 M = 7 M = 8

QAIR 0.44 0.72 0.85 0.92 0.95 0.97 0.98 0.99

ZAVG 0.52 0.81 0.90 0.94 0.97 0.98 0.99 0.99
�tZ[dBZ] 0.24 0.40 0.53 0.62 0.69 0.74 0.78 0.81

Figure 9 shows the profiles of the first three eigenvectors of all the fields. These

profiles indicate the combinations of the initial fields that produce the largest

variability in space and time. For instance, the first principal vector 'A,1 cor-

responds to a weighted average of ZAVG above 5 km, with an emphasis around

⇠ 8 km, whereas 'A,2 is a weighted difference between ZAVG(h � 8 km) and

ZAVG(h 2 [5, 8] km). A similar structure can be seen in the eigenvectors of the

dry air flux, where 'Q,1 averages QAIR mainly around 5 km and 'Q,2 makes the

difference between QAIR(h � 5 km) and QAIR(h < 5 km). The eigenvectors of

�tZ[dBZ] have different patterns as'D,1 is an average of �tZ[dBZ](h 2 [5, 10] km)

corrected by the average of �tZ[dBZ](h � 10 km), and conversely'D,2 is an aver-

age of �tZ[dBZ](h � 7 km) corrected by the average of �tZ[dBZ](h 2 [5, 7] km).

Next, a canonical-correlation analysis (CCA) is applied to identify the linear com-

binations of the radar observations that are most correlated with components of

QAIR [12]. The details of our implementation of this statistical method are pro-
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Figure 9: Principal-component (PCA) and canonical-correlation analyses (CCA)
of convective profiles in Isabel: vertical profiles of principal vectors (top) for ZAVG

(left), �tZ[dBZ] (middle) and QAIR (right), with normalized eigenvalues in legend;
vertical profiles of CCA weighting vectors (second row) for ZAVG (left), �tZ[dBZ]

(middle) and QAIR (right), with CCA correlation coefficient in legend; joint dis-
tributions of first (left), second (middle) and third (right) CCA pairs of variables
(bottom row).

vided in Appendix B. As a result we obtain a set of CCA projectors,

 A,j(h) =

M1X

k=1

ak,j'A,k(h),  D,j(h) =

M2X

k=1

aM1+k,j'D,k(h) and  Q,j(h) =

M0X

k=1

bk,j'Q,k(h),(10)
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that define the CCA variables

vj(r, t) =

Z 1

0

QAIR(r, h, t) Q,j(h)dh, (11a)

and uj(r, t) = uA,j(r, t) + uD,j(r, t), (11b)

with uA,j(r, t) =

Z 1

5

ZAVG(r, h, t) A,j(h)dh, (11c)

uD,j(r, t) =

Z 1

5

�tZ[dBZ](r, h, t) D,j(h)dh. (11d)

The cefficients {ak,j}k,j and {bk,j}k,j are provided by the CCA algorithm. By

construction, the pairs of CCA variables (uj, vj) are sorted by decreasing levels

of statistical correlation. This is illustrated in Fig. 9 (bottom), which shows the

scatterplot of the first three pairs of CCA variables and the correlation levels drop-

ping from 72% for (u1, v1) to 65% for (u2, v2) and 56% for (u3, v3). All these are

significant levels of correlation. The profiles of the corresponding CCA projectors

(second row) differ from those of the principal vectors. Interestingly, even though

the entire profile of Qair is used in the analysis, the strongest contributions in Q,j

correspond to altitudes above 5 km where the radar observations are available.

The frequent changes in the signs of  D,j make it difficult to interpret the patterns

of these vectors. Conversely, we see from  Q,1 and  A,1 that the difference be-

tween the dry air transported above 8 km and the dry air transported below 8 km

is strongly related to a weighted average of the reflectivity ZAVG around 7, 10 and

13 km.
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4.3.2 Bayesian retrieval of vertical mass fluxes

While the results in Fig. 9 confirm the significant correlation between profiles of

radar observations and vertical mass fluxes, the scatter in the joint distributions of

CCA variables indicates that there is more to the dependency of QAIR on ZAVG and

�tZ[dBZ] than simple linear relationships between CCA variables. Thus, to esti-

mate the profile of QAIR from ZAVG and �tZ[dBZ], we use a Bayesian-interpolation

approach conditioned by ZAVG.

First, the ranges of the dominant PCs of ZAVG are divided into sub-domains. To

obtain a grid with a manageable size, an importance-sampling strategy is used, i.e.

the range of ⌘A,k is divided according to the weight of its eigenvalue into Nk =

d10�A,k/�A,1e+ 1 sub-domains. In the present case, this implies N1 = 11, N2 =

7, N3 = 3 and N4 = N5 = N6 = 2. Then, given a cell A0 in the resulting hyper-

cube, we determine all the corresponding samples (i.e. C0 = ⌘

�1
A (A0) ⇢ C) and

use these samples (i.e. {⌘D,k}k=1,...,M2(C0) and {⌘Q,k}k=1,...,M0(C0)) to interpolate

every component of {⌘Q,k}k=1,...,M0 individually in terms of all the components of

{⌘D,k}k=1,...,M2 . 1 A first-order polynomial interpolation is used (we have verfied

that higher-order interpolations yielded limited improvement). By repeating the

process for every cell of the hypercube, we obtain an approximation for the PCs

of QAIR, which are denoted {d⌘Q,k}k=1,...,M0 and used in Eq. (9) to approximate
1In fact, we use {⌘D,k}k=1,...,M1(C0) and {vj}j=1,...,M0(C0) and interpolate every compo-

nent of {vj}j=1,...,M0 individually in terms of all the components of {⌘D,k}k=1,...,M1 . Then, we
pseudo-invert the matrix of CCA coefficients to obtain ⌘Q,k}k=1,...,M0 from {vj}j=1,...,M0 .
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QAIR by

[
QAIR(r, h, t) ⇡ EQ(h) +

M0X

k=1

d⌘Q,k(r, t)'Q,k(h). (12)

The accuracy of this retrieval algorithm is illustrated in Fig. 10 (left columns),

which shows the joint distribution of the retrieved QAIR versus the model truth.

These quantities are averaged over 100-mb-thick layers. Indeed, we observe the

strong correlation (� 75%) between the estimated and true fluxes of dry air. The

same retrieval algorithm is applied to the flux of moist air QCWM and yields

equally accurate results as can be seen in Fig. 10 (right).

The accuracy of the retrievals is also apparent in the CFADs of the retrieved mass

fluxes compared to those of the true fluxes. Figure 11 shows the nearly perfect

restitution of the mean and median (50%) profiles of QAIR and QCWM. The dy-

namic range of the fluxes (indicated by difference between 20% and 80% quan-

tiles) is also well estimated despite the slight underestimation of lower values of

QAIR and the underestimation of the largest values of QCWM below 7.5 km.

4.4 Scaling of results in convection

For numerical weather models to fully benefit from the retrieved convective fluxes,

these must be scaled relative to the total amount of convection in the tropics.
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Figure 10: Results of Bayesian retrievals of dry- (left) and moist- (right) air fluxes
QAIR and QCWM versus model truths. The Fluxes are averaged vertically over
[200,300] mb (top) and [300,400] mb (bottom).

Indeed, due to their narrow swaths, spaceborne radars can only observe a limited

portion of the tropics.

For this purpose, the large fleet of wide-swath radiometers in LEO is particularly

valuable as it warrants a frequent revisit time in the tropics. For instance, the

GPM-era constellation of mm-wave sounders revisits every point in the tropic at

least 18 times daily. While the measured brightness temperatures do not resolve
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Figure 11: Statistical comparison between retrieved air mass fluxes and model
truths: CFAD of dry-air flux (left) and moist-air flux (right).

the vertical structure of precipitation, they are sensitive to different heights of the

atmosphere depending on the frequency of the instrument. The various passive

measurements can be combined to build estimators for the vertically integrated

water content of the atmosphere and therewith the depth of convection.

This capability is illustrated in Fig. 12 using the WRF data at at 06:00 UTC and

WSM6 scattering tables in the Successive Order of Interaction (SOI) radiative-

transfer model [10] to simulate brightness temperatures. The simulated chan-

nels are those of the Microwave Humidity Sounder (MHS), i.e. T89,V , T157,V ,

T183.311±1,H , T183.311±3,H and T190.311,V with H (V) indicating a horizontal (verti-

cal) polarization. By applying a CCA to the first four PCs of the condensed water
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mass M and the measured brightness temperatures, an estimator is built for the

M . The maps in Fig. 12, show the high correlation between this estimator (right)

and the vertically integrated CWM (left).

Figure 12: Comparison between vertically averaged CWM M (left) from Isabel
simulations at 06:00:00, and our proxy for CWM (right) consisting of the opti-
mally correlation combination of MHS brightness temperatures determined from
the statistics that we calculated from our simulation using WSM6 microphysics.
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5 Application to a convoy of satellites

Given the long revisit time of low-Earth orbiting satellites, the only way to gather

frequent radar observations with a sufficient time resolution to enable the analysis

proposed in this article consists in using multiple spacecraft. The idea is to acquire

the atmospheric measurements using a convoy of satellites that trail each other by

a short time �t. Such a concept can be implemented in practice owing to recent

advances in small-satellite technologies that allow to deploy multiple CubeSats

on the same orbit in one launch at a reasonable financial cost. Equally important

are the advances made in electronic hardware and signal processing techniques to

miniaturize radars and qualify them for spaceborne missions. One such example is

the novel Radar in a CubeSat (RainCube) technology developed at JPL (see artist

concept in Fig. 13) and selected for demonstration in space by NASA through its

In-Space Validation of Earth Science Technologies (INVEST) program [18].

For our concept study, we consider a train of two such satellites separated by a

given time �t and each embarking a “Mini nadir-pointing Ka-band Atmospheric

Radars” (miniKaAR) that use the RainCube technology. The characteristics of

miniKaAR are summarized in Table 2. With a horizontal resolution of 5 km and

a vertical sampling of 250 m, the measurements of this instrument will have a

strong synergy with the dual-frequency radar of the GPM Core satellite. We an-

alyze the impact of some of the hardware and operational design parameters on
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Figure 13: Artist’s concept of RainCube.

the accuracy to be expected from a time-differenced analysis, and conversely the

design constraints imposed by the performance thresholds of our radar analysis.

Table 2: Characteristics of miniKaAR.
miniKaAR Characteristics Estimate

Mass 21 kg
Volume Dimensions 10⇥ 20⇥ 20 cm3

Antenna size 95 cm
Frequency 35.75 GHz

Peak transmit power 10 W
Spatial Resolution 5 km
Range Resolution 250 m

Measurement sensitivity 17 dBZ
Measurement precision 1 dBZ
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5.1 Effect of the sensitivity in reflectivity

The cumulative distribution function of the reflectivity factors in the convective

cores of our Isabel simulations (from 06:00 to 07:00 UTC and using all micro-

physics) is computed and plotted as a function of height in Fig. 14. This figure

whos that given its 17 dBZ sensitivity, MiniKaAR should be able to observe more

than 70 % of all Ka-band reflectivities between 4.5 and 9 km. As expected, the re-

turns below 4.5 km should be strongly affected by attenuation, while the hydrom-

eteors in the upper troposphere (above 10 km) should produce relatively weak

echoes.

5.2 Optimal inter-radar separation

To investigate the effect of the time spacing between the two spacecraft of the

convoy, we consider different time delays, viz. �t 2 {30 s, 60 s, 90 s, 240 s} and

compute the CFADs of absolute changes in Z[dBZ], which are plotted in Fig. 15

(bottom). Moreover, to measure the non-stationarity of Qair, we compute the

maximum relative variation of Qavg as a function of �t using the ratio

rQ(r, h, �t) =
max�t�t[Qavg(r, h,�t)]�min�t�t[Qavg(r, h,�t)]

E�t�t [|Qavg(r, h,�t)|] ,(13)
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Figure 14: CDF-by-altitude diagram of simulated miniKaAR reflectivity factors
(with all three micro-physics) for columns where |!| � 1 m · s�1.

with r the convective profile coordinates and h the height. For instance, rQ(r, h, �t0 =

60 s) measures the relative variation of Qair in profile r at the altitude h as it is

computed for �t = 30 s and �t = 60 s.

The CDF of rQ plotted in Fig. 15 (top) shows that with a separation of 240 s,

more than 50% of all convective columns have a maximum variability that ex-

ceeds 150%. Thus, such a separation would not yield useful measurements as
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Figure 15: CDF of the stationarity ratio rQ of QAIR for time separations of 60 s,
90 s, 2 min and 4 min and computed over convective columns (top). CFAD of the
absolute variation in reflectivity over durations of 30 s, 60 s, 90 s, 2 min and 4 min
and computed over convective columns (bottom).

the target QAIR that we want to estimate would have varied by 150% or more.

This statistic improves significantly for shorter separations, since for �t  60 s,

80% of all convective columns have a maximum variability that is smaller than

50%. However, for �t  60 s, Fig. 15 (bottom) shows that 50% of all columns

also have a reflectivity difference that is below the 1 dBZ precision of MiniKaAR.

Thus, the 90 seconds separation is a compromise between sensitivity threshold to

the change in reflectivity and the stationarity of the dynamical variables during the
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time interval.

5.3 Sensitivity to pointing uncertainties

Pointing uncertainties must be accounted for since the analysis presented in this

article depends crucially on the two spacecraft’s ability to observe the same atmo-

spheric region. We tackle this issue by gradually injecting mismatches between

beam pairs and tracking their effects on the correlation between the mass rate of

change �tM/M and the commputed �Z[dBZ] from mismatched beams. Figure 16

illustrates the progressive degradation of the relation between the measured reflec-

tivity difference and the estimated rate-of-change of the mass that results from a

progressively greater degradation in the coincidence between the two beams, from

our simulations. The correlation between �tM and �Z[dBZ] goes from 86% when

the beams coincide perfectly (top left), to 81% (74%) when the overlap decreases

to 78% (67%) (bottom row).

In terms of the uncertainty induced on the estimated mass rate, Figure 17 shows

this degradation as a function of the fractional overlap between the two beams, as

we derived it from our cloud-resolving simulations. A decrease of the fractional

overlap to 82% increases the r.m.s uncertainty to 0.55, i.e., an increase of 10%.

We required this to be the maximum increase in uncertainty due to pointing. This

lower bound on the fractional overlap is equivalent to requiring that the difference

46



Figure 16: Effect of pointing uncertainties on �tZ[dBZ] � ��tM relationship:
with 100% (top left), 89% (top right), 78% (bottom left) and 67% (bottom right)
overlap between beams of two miniKaAR radars.

in the pointing angles (from an altitude of 500 km) should not exceed about 0.1

degrees. Since the pointing errors on the two beams are independent, this can

be enforced by requiring the two-sigma error on each beam to be smaller than

0.05 degrees (so that even if the errors move the two beams in exactly opposite

directions, the difference will still not exceed 0.1 degrees). This implies a required

1-sigma uncertainty of 0.025 degrees.
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Figure 17: Effect of pointing uncertainties on �tZ[dBZ] � ��tM relationship:
with 100% (top left), 89% (top right), 78% (bottom left) and 67% (bottom right)
overlap between beams of two miniKaAR radars.

6 Conclusions

This article has presented a novel technique to characterize dynamic atmospheric

processes by using frequently-acquired tri-dimensional radar reflectivity measure-

ments from low-Earth orbiting satellites. Starting with ground-based NEXRAD

data, we have shown the added value of time derivatives of the radar measure-

ments, (possibly adjusted for advection estimated using a digital-image-correlation

technique). The derived products complement and refine the information provided

by the radar reflectivity factors by highlighting regions of increasing/decreasing

moisture in extreme-weather events such as blizzards of cyclones. The computed

derivatives also reveal latent features that are otherwise invisible in the radar re-
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flectivities, such as the evidence of water vapor provided by the atmospheric river

that was concomitant with the California Blizzard of January 2008.

Using a large set of high-resolution numerical-weather simulations from WRF,

we have shown the robustness of the dtZ[dBZ] � dtM/M relationship between

derivatives of the reflectivity and the rate of change of condensed-water mass in

the upper atmosphere (above 500 mb). The robustness of the dtZ[dBZ] � dtM/M

relation, which is independent from the micro-physical assumptions of the radia-

tive transfer simulations, provides reliable estimates of the moistening rate of the

upper atmosphere, which can in turns be used to nudge numerical models. This is

in contrast with the large noisiness of single-frequency Z � M relationships, as

evidenced using level-2 GPM products.

The fine vertical resolution of our simulations allowed us to resolve vertical air

mass transports in tropical convective cores. By combining a principal-component

analysis with a canonical-correlation analysis, we have shown the significant cor-

relation that exists in the upper atmosphere between the radar observations and

their derivatives on the one hand, and vertical fluxes of moist and dry air on the

other hand. Furthermore, we implemented a Bayesian retrieval algorithm to resti-

tute mass fluxes with a high degree of accuracy, i.e. with more than 70% correla-

tion between the estimates and their model truths, and a nearly perfect restitution

of the mean and envelope of the vertical profiles of QAIR and QCWM in convection.

The thus obtained information could help improve the parametrization of dynamic
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atmospheric processes such as detrainment, for which there is a large uncertainty

in current models. Moreover, we showed that these estimates can be scaled for

use in numerical-weather models by taking advantage of the dense coverage of

wide-swath passive-microwave sensors in low-Earth orbit.

All these encouraging results combined with the technological maturity of small-

satellites and miniaturized radars motivate the future development of spaceborne

missions to acquire frequent radar observations from a low-Earth orbit. The de-

sign study that we conducted assuming a convoy of two spacecraft each with a

MiniKaAR radar showed that i) more than 70% of the convection above 5 km of

altitude would be observed, ii) an inter-spacecraft separation of ⇠ 90 s would be a

good compromise between the sensitivity to changes in reflectivity of MiniKaAR

and the stationarity of the targeted air mass fluxes, and iii) a pointing accuracy

of 0.025� in half rms per spacecraft should warrant the accuracy in the retrieved

parameters.
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A Appendices

A.1 Estimation of the horizontal advection

To illustrate the digital-image-correlation technique (DICT) [22] used to estimate

the advection field U , we assume that the reflectivity observations are acquired

at times T = {t`, ` 2 N} over a regularly meshed volume. In a Cartesian

reference system the volume is denoted ⌦ = {M i,j,k = (i�X , j�Y , k�Z)}i,j,k

with �X , �Y , �Z the step sizes of the mesh.

Given two consecutive radar data sets Z(·, t`�1) and Z(·, t`), for every point M i,j,k,

and for every horizontal displacement vector u among the possible displacement

vectors U ⇢ R2, a ”horizontal neighbourhood” A is considered about the points

M i,j,k and M i,j,k +u. The neighbourhood A is chosen as a square, which covers

(2n + 1) ⇥ (2n + 1) pixels, with n > 0. The maximum size of the displacement

vectors in U is chosen according to the maximum distance the cloud/precipitation

is expected to advect during the time span t` � t`�1, whereas the extent of the av-

eraging area A is chosen according to the spatial correlation length of the features

of Z.

The cross-covariance between Z(M i,j,k, t`�1) and Z(M i,j,k +u, t`) is computed
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as

⇢(M i,j,k;u) =
EA

h
b
Z(M i,j,k, t`) bZ(M i,j,k + u, t`�1)

i

�Z(M i,j,k, t`)�Z(M i,j,k + u, t`�1)
, (14)

where b
Z(M i,j,k, t`) = Z(M i,j,k, t`)� EA[Z(M i,j,k, t`)],

�Z(M i,j,k, t`) = EA[ bZ2(M i,j,k, t`)],

EA[f(M )] =
1

(2n+ 1)2

nX

kX=�n

nX

kY =�n

f [M + e(kX , kY )],

for any function f , with e(kX , kY ) 2 U an elementary displacement vector (by kX

pixels along the X axis, and kY pixels along the Y axis). As a result, we obtain the

list of coefficients {⇢(M i,j,k;u), u 2 U}, from which the displacement vector

u⇤ is obtained as

u⇤(M i,j,k, t`) = argmax
u2U

⇢(M ;u, t, �t), (15)

and the advection as

U (M i,j,k, t`) =
1

t` � t`�1

u⇤(M i,j,k, t`). (16)

To increase the robustness of the determination of the advection vector, we require

that the estimate of U be obtained from a clearly defined maximum of ⇢. This

amounts to requiring that the Hessian of ⇢ be non-singular, e.g. by constraining

its condition number.
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The importance of accounting for the advection when dealing with frontal systems

is illustrated using NEXRAD observation of the California Blizzard discussed in

Section 3.1. Figure 18 displays the vertical averages of Z (left), dtZ inclusive

of the advection estimated by DICT (middle) and @tZ not accounting for the ad-

vection (right), for data at 22:11 (top) or for data averaged between 18:14 and

01:00 (bottom). The strong advection of the storm produces large differences in

Figure 18: Maps of vertically averaged reflectivity (Z, left panels), associated
total derivative (“dtZ” = @Z/@t + V · rZ, center panels) and time derivative
(“@tZ” = @Z/@t, right panels): the top row shows the instantaneous values at
14:11 PST (during the squall), and the bottom shows the temporal averages from
10:14 to 17:00 PST.
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the maps of @tZ (right) and dtZ (middle) both in the instantaneous data (top) and

their long-term averages (bottom). On the one hand, the map of dtZ shows the

sources of moisture in the South-West originating from the atmospheric river. On

the other hand, with @tZ the displacement between consecutive radar measure-

ments leads to a progressive cancellation of features in @tZ, as indicated by the

smaller range of variation of @tZ compared to dtZ.

B Principal-component and canonical-correlation anal-

yses

B.1 Principal-component analysis

To capture the variability of QAIR(h � 0), ZAVG(h � 5 km) and �tZ[dBZ](h �

5 km) in a organized way, a principal-component analysis is applied. The covari-

ance matrices KA, KD, KQ are computed over the set C of convective profiles for

ZAVG, �tZ[dBZ] and QAIR, respectively. An eigenvalue decomposition of the co-

variance matrices yields the eigen-systems {�A,k,'A,k}k=1,...,N1 , {�D,k,'D,k}k=1,...,N1

and {�Q,k,'Q,k}k=1,...,N0 , with N0 the number of bins in the entire vertical profile,

and N1 the number of bins above 5 km. The eigenvalues are sorted in decreas-

ing order, i.e. �A,1 � �A,2 � . . . � �A,N1 � 0 and similarly for {�D,k}k=1,...,N1
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and {�Q,k}k=1,...,N0 . The principal vectors {'A,k}k=1,...,N1 , {'D,k}k=1,...,N1 and

{'Q,k}k=1,...,N0 each form orthonormal bases onto which the initial fields are pro-

jected as follows

QAIR(r, h, t) ⇡
N0X

k=1

⌘Q,k(r, t)'Q,k(h), 8h � 0 km, (17a)

ZAVG(r, h, t) ⇡
N1X

k=1

⌘A,k(r, t)'A,k(h), 8h � 5 km, (17b)

�tZ[dBZ](r, h, t) ⇡
N1X

k=1

⌘D,k(r, t)'D,k(h), 8h � 5 km, (17c)

with

⌘Q,k(r, t) =

Z 1

0

QAIR(r, h, t)'Q,k(h)dh, (18a)

⌘A,k(r, t) =

Z 1

5

ZAVG(r, h, t)'A,k(h)dh, (18b)

⌘D,k(r, t) =

Z 1

5

�tZ[dBZ](r, h, t)'D,k(h)dh. (18c)

The principal components {⌘A,k}k=1,...,N1 , {⌘D,k}k=1,...,N1 , {⌘Q,k}k=1,...,N0 have

vanishing means and variances equal to the eigenvalues {�A,k}k, {⌘D,k}k and

{⌘Q,k}k, respectively. The generally rapid decay of eigenvalues allows to ap-

proximate the initial fields using a few terms. For instance, if our objective is to

capture at least 80% of the variability of the fields, based on Table 1, Eqs (18) can

be truncated to M0 = 3, M1 = 2 and M2 = 8, respectively.
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B.2 Canonical-correlation analyses

To find the dominant correlations between the the radar-derived and environmen-

tal parameters, a canonical-correlation analysis (CCA) is applied [12]. Using the

PCA decomposition, the CCA identifies the linear combinations between compo-

nents of the observation vector X = (⌘A,1, . . . , ⌘A,M1 , ⌘D,1, . . . , ⌘D,M2) that are

the most correlated with linear combinations of components of the environmental

vector Y = (⌘Q,1, . . . , ⌘Q,M0).

The CCA algorithm provides two matrices A = (ai,j) 2 R(M1+M2)⇥M0,1 , B =

(bi,j) 2 RM0⇥M0,1 where M0,1 = min (M0,M1 +M2), and a vector of pos-

itive numbers RCCA = (rCCA(1), . . . , ...rCCA(M0,1)) with rCCA(1)  . . . 

rCCA(M0,1). The matrix A is the matrix of eigenvectors of the matrix K

�1/2
XX KXYK

�1
Y YKY XK

�1/2
XX

and B is the matrix of eigenvectors of the matrix K

�1/2
Y Y KY XK

�1
XXKXYK

�1/2
Y Y ,

where KXX and KY Y are the covariance matrices of X and Y , while KXY =

K

t
Y X is the cross-covariance between X and Y .

As a result, i) the components of

(
uj =

M1+M2X

i=1

ai,jXi

)

j=1,M0,1

are mutually sta-

tistically uncorrelated, and similarly for

(
vj =

M0X

i=1

bi,jYi

)

j=1,M0,1

; and ii) for ev-

ery component j = 1, . . . ,M0,1, the statistical correlation between between uj

and vj equals rCCA(j).
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It is convenient to combine the results of the CCA and PCA by defining the pro-

jectors,

 A,j(h) =

M1X

k=1

ak,j'A,k(h), (19a)

 D,j(h) =

M1X

k=1

aM1+k,j'D,k(h), (19b)

 Q,j(h) =

M0X

k=1

bk,j'Q,k(h). (19c)

With these new variables, the CCA variables uj, vj are obtained by applying the

CCA projectors to the initial fields as follows

vj(r, t) =

Z 1

0

QAIR(r, h, t) Q,j(h)dh, (20a)

and uj(r, t) = uA,j(r, t) + uD,j(r, t), (20b)

with uA,j(r, t) =

Z 1

5

ZAVG(r, h, t) A,j(h)dh, (20c)

uD,j(r, t) =

Z 1

5

�tZ[dBZ](r, h, t) D,j(h)dh. (20d)
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